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Abstract. We study toy aging processes in hierarchically decomposed phase spaces where
the equilibrium probability distributions are multifractal. We found that the auto-correlation
function, survival-return probability, shows crossover behaviour from a power fawn the
quasi-equilibrium regimer(« #y) to another power law=" (» > x) in the off-equilibrium
regime ¢ > ty) obeying a simple/#, scaling law. The exponenisand are related with the
so-calledmass exponentahich characterize the multifractality.

1. Introduction

The aging processes, i.e. relaxational processes to approach the thermal equilibrium, are
extremely slow in glassy systems like spin-glasses and one can observe remadiagle
effectsin experiments [1,2]. Among the various phenomenological descriptions of the
aging effects are those by Sibani and Hoffman [3] who proposed a scenario based on the
concept,hierarchical diffusion[4]. The latter concept has been implemented in many toy
models [5-8], which we hereafter refer tolderarchical diffusion modelsThe concept [10]

is roughly as the following. First, one considers that the free-energy landscape consists of
hierarchically nested valleys, which are usually described in terms of a cedaistructure.

Then one introduces a relaxational dynamics in terms of a certain master equation which
describes diffusion processes between different valleys driven by thermal hoppings over the
barriers. Solving the master equation, one obtains the time evolution of the distribution of
probabilities to find the system at different bottoms of valleysl¢avesof the trees).

In the present paper, we consider hierarchical diffusion in a class of trees which have
the following two characteristics. First, we consider that the backbone structures of the trees
have self-similarity as in many of the previously studied models. Secondly, we consider that
the equilibrium probability distributions on the leaves are multifractal. The latter point is
different from the previously studied models, whose equilibrium probability distributions are
restricted to be uniform by their designs (see however)[9Ve introduce the relaxational
dynamics in terms of an exactly solvable master equation.

We study aging processes after rapid temperature quenches in our model. An aging
process appears as the growth of sub-trees in which the probability distributions are quasi-
equilibrium (multifractal) whereas on larger scales than such sub-trees the probability

t Present address: Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo,
106 Japan. E-mail address: yhajime@ginnan.issp.u-tokyo.ac.jp)

1 Nemoto considered mimicking the dynamics of spin-glasses at low temperatures by an hierarchical diffusion
model. He constructed random trees using information of the metastable states of the SK model, in which both
the heights of the branch points and the statistical weights of the leaves have randomness. The present work is in
part inspired by his work.
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Figure 1. Hierarchical organization oftates This example is generated by a RBP explained
in section 2.4.2 gpranch= 0.10, & = 1.0, F(¢¥) = §(¢ — 0.2), 20 MCS.) All the branches on
the left side have weight & ¢ = 0.8 while those on the right side have weight= 0.2 as
indicated in the figure.

distributions are still non-equilibrium (non-multifractal). As the result, a simple auto-
correlation function, the survival-return probability, shows a characteristic crossover
behaviour: it decays by a power law* in the quasi-equilibrium regimer (« ¢,) but

by another power law—* in the off-equilibrium regime (> #,) and obeys a simple/t,
scaling. The exponents and A turns out to be related with the so-callethssexponents
which characterize the multifractal properties of the probability distributions.

The organization of this paper is the following. In section 2, we introduce our
hierarchical diffusion model. In section 3, we analyse the aging effect in our model focusing
on the scaling properties of an autocorrelation function. In section 4, we summarize this
paper with some discussions.

2. The model

2.1. Construction of a tree

Let us consider a system of mamsyateswhich have the following clustering property.
Suppose that the system can be coarse-grained so that diffaeges merge into fewer
numbers oftates In figure 1, we show such a system represented as a tree. The magnitude
of the resolution power increases downwards along/tfaxis: thestates(branches) are
differentiated into more states (branches) as we raise the resolution power. We label the
statesdifferentiated with the maximum resolution power (feaveson the baselines of the
trees) ad.; (i =1...N) whereN is the number of such states.

For simplicity, we will only consider bifurcating trees: at every branch point we always
have two branches stemming down. We will refer to the set of branches and branch points
under a branch point, saj, as sub-treed. We will refer one and the other side under a
branch pointA as sidd andll of A and present them on the left and right side respectively
in the figures.

We construct the partition function of the system at the equilibrium as follows. The
coarse-grained states (branches) at the same resolution level are considered to be all
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energetically degenerate with each other. However, the numbmicobscopicstates they
contain can vary, which means that the equilibrium local entropies and so the equilibrium
statistical weights can vary as well. We consider that as a bifurcation takes place downwards
along theh-axis (the direction to increase the resolution power), the equilibrium local
entropy of a coarse-grained state is partitioned into those of two sub-states underneath. In
order words, the partition function of sub-tr@eis partitioned into those of side and side
11 sub-trees undeB with a certain partition ratio, say 4 ¥ (B) andy¥(B) (0 < ¢ < 1),
respectively.

Let us denote the child a8 (a branch point just below) on sidel asC;(B) and side
I1 asCy;(B). Then the ratio of the partition function of sub-tr€g(B) andC,,;(B) to that
of B, which we denote as (B, B), takes the following values,

1-ys  B=Ci(B)
Vs B =Cy/(B).
It is useful to generalize the above argument as the following. Suppose that a suibitree
enclosed by a larger sub-trée Let us denote thparent of D (the branch point just above
D) as D; and thegrand-parentof D (the parent of D;1) as D, and so on. Suppose that

is the Kth ancestorof D, i.e. Dy = B. Then the ratio of the partition function of sub-tree

D to that of sub-treeB, which we denote as (D, B), can be written as the product of
along the (unique) verticglath which connectsD and B,

7(D, B) = n(D, D)n(D1, Dy) ... 7n(Dg_1, B). )

n(B, B) = { (1)

For example, consider the set of leaves in a sub-BeeThenrx(L;, B) associated with
such a leafZ; can be interpreted as thelative statistical weight of the leaf among the set
of leaves in sub-tre®. We denote the highest branch point&s, and choose the partition
function of the whole tree to be 1. Then the equilibrium statistical weight of alleafn
be written ast(L;, Biop).

Here we define some other terminologies for later uses. We denotntiestorsand
descendantswhich are the set of branch points above and below the branch Boiat
A(B) and D(B) respectively. We denote the set of all branch points under sidasd
II of B asD;(B) andD;;(B) respectively. (Note thaD;(B) U D;;(B) = D(B).) We
denote theparent, grand-parentand theKth ancestor ofB as By, B, and Bx respectively
as we already did above. We denote tbwest common ancestaf B and B, the branch
point at the top of the smallest sub-tree which enclose tbthnd B, as A(B, B). For
the convenience, we also introduce a hypothetical branch pigt,g whose height is
D Beging = 00 @Nd S€UT (Brop, Beeiling) = 1.

2.2. The master equation

We now introduce a stochastic dynamics of the temporal state in the hierarchically
decomposed phase space. We consider that there is a thermally actxateation
associated with a branch point, s@y in the tree with which the temporal state can go
from one to the other leaves in sub-tr@e The excitations associated with the branch
points at higher: are considered to have higher activation energies to be excited. Thus, we
now redefine the vertical-axis as the scale of the activation energies of such excitations
associated with the branch points.

We now introduce a simple exactly solvable dynamics which describes the stochastic
jumps between the leaves, i.e. the states which are differentiable with the maximum
resolution power. Hereafter we call the latter simplystetes Let us denote the probability
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to find the temporal state of the system at a siatat timer as p;(¢). The time-dependent
distribution of the probability can be expressed in terms of a vector,

p(t) = (p1(t), p2(t), ..., pn(1)) (3

which should become equal to the equilibrium probability distribution in the limit oco.
We denote the latter gs*d = (p5°, p5°, ..., py) where

P,-eq =m(L;, Btop)- (4)

Let us denote the transition probability to go from stafeto L; in a unit time asW;.
Then the master equation for the evolution of the probabilities can be written as

d
PO =-Tp®) ©)
with
-y =W, —3ijZij- (6)
x

Note that the sum of the probabilitEfV=1 pi(t) is always conserved.

We consider that the thermal jump process of the temporal state from a statel(leaf)
to another state consists of two stages. In the first stage, the excitations associated with the
branch points ind(L) (ancestors of.) are activated in a successive manner as the following.
Suppose that the excitation associated with such a branch Boistactivated. Then its
parentB; get a chance to become active or not with the probability-exps, — #5)) and
1 — exp(—(hg, — hp)) respectively. IfB; becomes active, we repeat the same trialBor
Otherwise, the successive ignition of the excitations stop there at theAgverhus, the
probability that the first stage ends ABtis

K
w(B « L) = [ [exp(—(ha, — ha,,)) (1 — exp(—(hs, — hp)))
n=1

= exp(—hg) — exp(—hg,) @)
whereAg = L andAgx = B.

The second stage is tfiglling down process from the heiglitz to a leaf of sub-trees.
Reminding that the leaves € D(B) have different relative statistical weight{li, B), we
expect that the probabilities to fall into the leaves depend on their amount of local entropies
in such a way that those with larger amount of local entropies have more charneesite
the temporal state. So we simply choose the probability to fall down to a state {le=)

w(l < B) = (L, B). (8)
Combining the above two factors, we obtain the transition probability to go ftota L
via B as
w(L|B|L) = w(L < B)w(B < L)
= (L, B)[exp(—hg) — exp(—hp,)]. ©)
Note, however, that such a process takes place only if baahd L belong to the sub-tree

B.
The transition probabilityW;; from L; to L; is the sum of the transition probabilities

overA, ofn=0,1,..., M —1 whereAq = A(L;, L;) (the lowest common ancestor of

andL;) and Ay = Beeiing. Thus, the off-diagonal elements of the mati® becomes
M-1 M-1

Wizj = Y w(LjlAy|Li) = ) [exp(—ha,) — eXp(—ha, )] (Li, Ay) (10)

n=0 n=0
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Using (4) and (10), it can be checked that the detailed balance condition
Wiip;'=Wp;" (11)
is satisfied with this choice.

2.3. Solution of the master equation
We now solve the master equation (5). The formal solution can be written as

p(t) = exp(—I'1)p(0) (12)

wherep(0) is the initial distribution at = 0. The probability that the temporal state which
initially stay atL; reachL; at timer is

Gij(t) = [exp(=T1)];;. (13)

In order to calculate the propagat6¥, it is convenient to introduce a new matix with
which we can rewritd” as

T = (peq)l/fo(peq)fl/Z (14)

wherep® is the vector of equilibrium statistical Weighpseq defined in (4). Note thaF is
a real symmetric matrix so that it has real eigenvalues.

We now look for theN eigenstates oF in a heuristic way. First of all, thetatic mode
can be found easily as the following. The matfixsatisfiesI'p®® = 0 due to (6) and (11),
from which we obtainl'(pe%)Y/2 = 0. The last equation means that the veapi?¥? is
an eigenvector whose eigenvalue is 0, §&tic mode. There ar&/ — 1 other eigenstates
(dynamic modesleft to be found.

We construct here a set of vectors which consists of vectors localized under the branch
points. We may call this set of vectors ambrella setbecause of the localized shape of
the amplitudes. On a branch poiBtwe define a vector

S;(B) = n'*(L;, B)u(L;, B) (15)
where
1 B = Bceiling

B # Bceiling Be Di(B)
u(B, B) = (16)
B # Beeiling Be Dy (B)

0 otherwise.

Note that the vectaﬁ,-(Bce”mg) is identical to the eigenvector of the static mode we obtained
above. It can be easily checked that the vectors are normalized and orthogonal,

Z Si(B)S;(B) = 8 5. (17)

Since there ar&/ — 1 eigenvectors oW — 1 branch points and one static mode, which are all
linearly independent with each other, they together constitute a complete set of dim&nsion
As shown in appendix A, the vectd;(B) actually turns out to be the correct eigenvectors
of T" which have the associated eigenvalues

Z(B) = exp(—hp). (18)
Note thatz(Bceiing) = O (static mode) is endured since we have/sgf, , = oo.
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_ Now we rewrite some previously defined matrices in terms of the umbrella set. At first,
I' becomes

Ty =Y 8iB)B)S(B). 19)
B
Then using the last equation and (15) in (14), the mdiyixbecomes

Ty = (pH"°Ty (P;q)_l/z
:Zn(L,',B)u(L,-,B)u(Lj,B)f(B). (20)
B

Finally, we also rewrite the propagat6 in terms of the umbrella set. Using (13), (14)
and (19) we obtain,

Gij(t) = (piH? ) 1Si(B) exp(—2(B)1)S; (B)}(p; ™) /2
B

= Zn(L;, B)u(L;, B)u(L;, B) exp(—2(B)1). (21)
B

Using (15) and (16) and performing similar calculus shown in appendix A, we obtain the
propagator in a more explicit form,

M-1

Gi;(t) = Z[eXP(—E(AnH)l) — exp(—=z(A)D)]m (Li, Ap) + 8ij €XP(—Z2(A0)?) (22)
n=0

where we definedg = A(L;, L;) and Ay, A, ..., Ay—1, Ay = Beeiling-

2.4. Multifractality on self-similar trees

2.4.1. Mass exponentdn this paper we consider self-similar trees on which the
distributions of the equilibrium statistical weights have the following multifractal
characteristics. Let us define th¢h momentsof the statistical weights [16] as,

M, (h)dh = Z 8(h — (hg — hg))mi(B, B)dh (23)
BeD(B)

where the over-line means the average over statistically independent sulB-tr&eppose
that agth moment have the following scaling behaviour,

M, (h) dh ~ exp(z(q)h) dh, (24)

where the exponent(q) is called as anass exponertL6]. If 7(g) depends nonlinearly on
g, the distribution is regarded asultifractal.

The geometrical self-similarity appears in the zeroth momégt:), which is just the
number of leaves of a tree of height The mass exponent(0) is the fractal dimension
of the tree and sometimes calledsghouetteof the tree [8], which measures whether a
given tree isslenderor fat. A trivial exponent ist(1) which is always zero because of
the normalization condition of the statistical weights. Another exponent which turns out to
be quite important is the mass exponent of the second moni@nt As we see later, the
two exponentg (0) andt(2) are related with the dynamic exponents of the survival-return
probability in the present model.
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2.4.2. Randomly branching treesAs an example of the trees which have the multifractal
properties mentioned above, we construct here a specific class of random trees generated by
the following randomly branching process (RBP). We use this specific example later when
some demonstrations are necessary.

An RBP starts with a singléeaf, which is regarded as the highest branch pdig},
and two branches stemming down from it. In a single step, the length of the branches under
the lowest (new) branch points get longer by one unit, dagalthat the height (from the
baseline of the tree) of all branch points and so that the height of the tree get larger by
db. The branching at a leaf occurs with probabilpyanch in @ single step. When it takes
place, the leaf becomes a new branch point and two new branches start from it. Each of
such events occurs independently from each other. Repeating this procedure, we obtain a
backbone structure of a tree.

Next we assign theveightson the tree. Consider a branch poigitand its child (the
branch points just belowB) C; on sidel and C;; on side/I. We determine the variable
¥p and assignt (C;, B) = 1 — ¢ andx(Cy;, B) = ¥ to the branches on the sideand
I1 of B. The variableyp on each branch point is chosen randomly from the distribution

F (i) dyy = probability thaty-p lies betweeny andvr + dy. (25)

We perform this procedure for the whole branch points.

Consider a tree which grows larger by the RBP. A natural consequence of the RBP
is that the backbone structure possesses statistical self-similarities. On the other hand, the
statistical weights on the leaves are successively partitioned further into more and more fine
pieces by the RBP. It is well known that if such a process is repeated, one often finds very
peculiar distribution of the weights: some set of pieces which have rather larger weights
but negligibly smaller population compared with thgical ones which come to rapidly
dominate the total sum of the statistical weights (the partition function of the whole tree)
as the branching proceed further. This phenomena is calledling [15] of multifractal
objects.

As we show in appendix B, we actually obtain the scaling property of the form (24) in
the case of the random trees generated by the RBP. The mass exponent is,

1
T(q) = dp~* log |:Pbranch‘/(; dy FH){y?+ A -y} + (1 - Pbranch):|' (26)

It can be seen that it is generally nonlinear with In figure 2 we show an example of
7(g) on random trees generated by a RBP. A special case wipnbecomes linear with

g is when the following two conditions holdpyranch = 1 (deterministic branching) and
F) =8 — %) (always symmetric partition).

The real samples of such random trees can be generated numerically by the following
Monte Carlo method. In one Monte Carlo step (MCS), the height of all branch points are
raised by é@. Simultaneously a pseudo-random number is generated for every leaf and if
it is smaller thanpyanch, @ bifurcation takes place: the leaf becomes a new branch point
and two new branches start from it. Figure 1 is actually an example of such a random tree
obtained by simulating the RBP @kanch= 0.10, & = 1.0 andF (v) = §(y» — 0.2) for 20
MCS.
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Figure 2. The nonlinear behaviour of the mass exponeft) versusg: the curve is obtained
using (26) for RBP ofppranch= 0.10, & = 1.0 and F(¢/) = §(y¥» — 0.2). The two important
values oft(¢) atg = 0 andg = 2 are indicated by the arrows for later reference.

3. Aging effect

3.1. Growth of quasi-equilibrium domain

We now consider an aging process after rapid temperature quench from high temperature.
For this purpose, we choose the initial configuration as,

1
0)=—. 27
PO =5 (27)
After waiting for #,, (waiting time), the probability distribution evolves up to,
p(tw) = G(tw)p(0) (28)

which eventually becomg®® ast#, — co. Note that the initial non-equilibrium distribution
is not multifractal because it is uniform, while the final fully equilibrated distribution is
multifractal. Hence, the aging process in the present context can be understood as the
process to approach a multifractal distribution from a non-multifractal distribution.

In order to see how the systeages it is convenient to define

e 1 . _ .
ri(tw) = pi(tw)/ p; = N XB:GXD(—Z(B)tw)ﬂ Y(B. Buopii(Li, B) (29)
where we used (21) in (28) and defined
i(Li, B) =u(L;, B) Y u(L;. B). (30)
jeD(B)

In figure 3 we show an example ofi(s,) calculated using the exact solution of the master
equation solved on a real sample of random tree shown in figure 1. One can see that, as
increasesy; (t,) of different states come to join with each other successively and constitute
groups, among each of which the valuesrgf,) are common. Note that as far as the
transitions within such groups are concerned, the detailed balance (11) is fulfilled. Thus,
we may call such a group of stategjaasi-equilibrium domain

In order to understand the growth mechanism ofghasi-equilibrium domairn a more
formal way, let us introduce a characteristic heigfit(s,,) which grows logarithmically with

tWa

1 () = log(tw). (31)
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Figure 3. Growth of local equilibrium domain with increasing waiting timg: the plot of
ri(tw) = pi (tw)/p?q versusty, on the random tree shown in figure 2.

Due to the factor exp-z(B)t) =~ exp(—exp(h(tw) — hg)), the contributions from the
branch points lower thahk®f(z,,) in the r.h.s. of equation (29) are negligibly small, compared
with those from the branch points higher thaff (z,). So it can be roughly approximated
as

ritw) >~ Y exp(—Z(B)tw)m (B, Bopii(L:. B). (32)
h(B)>h® (1)

Consider a pair of state; and L; whose lowest common ancestorA$L;, L;). Suppose
that after certain waiting time;;, the characteristic heighi®®(s) becomes larger than
haw,.1)- Then from the definitions (30) and (16), all the terms that survive in the sum
of (32) become the same fdr; and L;. Consequently;(ty) = r;(tw) holds forever for

tw > l‘\;’:,.

To summarize, the aging process of the present hierarchical model is understood as
the growth ofaged sub-trees or quasi-equilibrium domains. Here we mean by a quasi-
equilibrium domain a sub-tree under a branch point lower than the characteristic height
he%(t), which grows logarithmically withs,. The probability distributions inside an
aged sub-tree is almost the same as that of a fully equilibrated one except for a common
multiplicative factor. This is one of the most important consequenbéeoérchical diffusion
and actually found to be the case in the relaxational dynamics of microscopic spin-glass
models [11].

The probability distribution inside an aged sub-tree is multifractal and possess the same
scaling behaviours as that of the fully equilibrated one while on higher 8calen®f (1), the
system is still highly non-equilibrium oyoungin the sense that the probability distribution
is not multifractal.
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3.2. Survival-return probability

We now introduce one of the simplest auto-correlation functions as proof, that is the survival-
return probability,

q(t + tw. tw) = Y pi(tw)G (1) (33)
It measures the probability that the system returns to the leaf where it stayed af,time

after additional travelling of.
Using (21), the autocorrelation function can be rewritten in terms of the umbrella set as

q(tw t +1w) = ) pi(t) G0

=Y exp(—251) Y pi(tw)m(Li, Byu?(L;, B)
B i

= / dzpy, (2) exp(—z1) (34)

where we defined a kerng},(z) as
po(@) =) 8z — 23){ > piltw)m(Li, Byu*(Li, B)}. (35)
B i

In the latter sections, we study the scaling behaviours of the survival-return probability in
random trees generated by RBP focusing on the role played by the waiting,time

3.3. Two extreme cases

3.3.1. Zero waiting time. We consider at first a special case of zero-waiting tipe- 0,
which means that the system is in an extremely non-equilibrium condition=ad. Since
we have set the initial condition as (27), we obtain

1 .
po(@) = ZBja(z —2(B))

1
=% 23:5(/1 — hp)) dh, (36)

where we used (18) and defined a variable — log(z).
Using (23) and (24), we obtain

1 1
N > 8(h—hp)dh = v > 8((hpgy —h) — (hp,, — hp)) TO(B. Biop) dh
B BeD(Biop)

1
~ NMo(h&Op — h) dh >~ exp(—t(0)h) dh
~z1d; (37)

wheres = 7(0) is the silhouette. In the last equation we uged- Mo(h3,,) Where By is

the highest branch point. In the above equations, we approximated the sums by their mean
values (23) assuming that the contributions of the deviations from this mean value vanish
in the thermodynamics limiv — oo, i.e. self-averaging This assumption is valid on trees
generated by the RBP because quantities on sub-trees under different branch points at the
same height are statistically independent from each other.
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Then using (37), we obtain a power law decay in the off-equilibrium limit

q0,1) = / dzQ(2) exp(—z1) ~ 17" (38)
where the exponerit is equal to the fractal dimension or silhouette of the tree,
A =s=1(0). (39)

The above result is similar to those of the previously studied hierarchical diffusion models,
which also yield power law decays whose exponents are related with the silhouette of
the trees [5-8]. It is, however, not surprising because the distributions of the equilibrium
probabilities in such models are uniform which is also the case for the present choice of
the initial condition (27).

3.3.2. Infinite waiting time. The special case of infinite waiting timg = oo is also of
interest. In this limit, the system is fully equilibrated or aged at 0. Using p, (co) = pfq
and (4), we obtain

poo() =Y 8(z — 2(3)){ > pi%(Li, By (L, B>.} (40)
B i
= 8z — 2(B)7(B. Bop) Y w*(Li. Byu*(L;. B)
B i
= 8(z — 2(B)7(B, Biop) P5(2) (41)
B
where we defined
Dp(z) =8(z —25) Y 7°(Li, Bu*(Li, B) (42)
L;eD(B)
Vs R 1-yp .
=1-,,°G W > 7L B) 5, 0@ =) > 7L B).

L;€D;(B) B LDy (B)

(43)

It is sufficient to consider the scaling property of the first term in the last equation. We
can rewrite it as,

8(z—2p) Y. w(Li, B) ~ Ma(h) ~z7"@ (44)
L;eD;(B)
where we wroteh = —log(z). In the first equation, we evaluated the sum by the mean

value (23) assumingelf-averagingproperty and used (24). Thu®,z(z) scales withz as
®p(z) ~ z77@. In the same way we obtain,

> "8(z — 25)7(B. Bop) dz ~ My(hp,, — h) dh
B

d
~ constant- (45)
b4
where we wrote agaih = — log(z) and used (1) = 0. Combining above results we obtain
Poo(z)dz ~ z77@71dz. (46)

Using (46) in (34), we finally obtain another power law in the fully equilibrated limit,

q(t +00,00) ~1t7* (47)
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wherex is an exponent defined as,
x=-1(2). (48)

Let us make some comments on the difference between the two dynamical exponents
A and x. Generally, the inequalityy. > x and equivalentlyr (0) > —t(2) hold as long
as 7(gq) decreases monotonically with increasipgand concave downward. (Note that
(1) = 0 holds always as we mentioned before.) The latter conditions seem to be usually
satisfied. This is certainly the case on the mass exponents of trees generated by the RBP
whose formula is given in (26). The equality holds only wh&jncn= 1.0 (deterministic
branching) andF (y) = §(yv — 0.5) (always symmetric partition) so that the equilibrium
probability distribution becomes the same as the initial non-equilibrium (non-multifractal)
distribution.

3.4. Crossover behaviour: aging effect

Now we consider the case @ihite waiting time, in which we expect some waiting time
effects, i.e. crossover from quasi-equilibrium to off-equilibrium behaviour. It is now
convenient to introduce another kerggk, z) such that

pu@) = [ €. D exp—in). (49)
Then the autocorrelation function (34) can be rewritten as
q(t + tw, tw) = /dz/dz’ﬁ(z,z’) exp(—zt) exp(—zty). (50)

From (35), (28) and (21) we obtain the explicit form of the kerphéd, 7) as

1 ,
P =13 ) 8 —2BIE —2(B))
B B

x{ > w(Li, Byw(Li, Byu*(Li, Byu(Li, B) Y u(L;, é)}. (51)
i J

The scaling form ofo(z, ) is studied in appendix C. Here we read the result,
dz dz ,
Z_T(z)?z?z (z>2)
0(z,2)dzdz ~ . 52
p(z,2) dz dZ Z)T(O) ot / (52)
- Z — (z <2).
Z zZ z
Using (52) in (50), we finally obtain

q(t + tw, tw) ~ 7P Gt /tw) + 17O OTT PG (¢ /1) (53)

where we defined

¥/
Ga(s) = ledyy_’(z)_lexp(—y) dyy~texp(—y)

Ga(s) = Ca f dyy™ @ texp(—y) | dyy OO exp—y) (54)
y/s
whereC; and C, are numerical prefactors.
From the above results, we find that the autocorrelation function obeys the following
simplet/t, type scaling,

gt + tw, tw) ~ 177G (t/tw) (55)
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1.0

(b)

-0.0953
-0.0513

qt,+tt)
qit +t)
-

ocnnm—s {

y =0.5

10 10

Figure 4. The crossover behaviour @f(sy + 2, ty) at differentzs, on two specific kinds of
random treesd) and ) (see text). They varies asy = 0,10, 10, ..., 10", o from the
lowest to the top curve.

where the scaling functiofi(y) behaves as

~ constant (GRS H)
q(y) ~ { s (56)
y y>1
with x = —7(2) andi = t(0).

From the above scaling form, it can be seen that the autocorrelation function crossovers
from quasi-equilibrium behaviour— to off-equilibrium behaviour—* at aroundr ~ t,.

This crossover behaviour appears due to the growth of the quasi-equilibrium domain in
which the probability distribution is multifractal while on larger scale, it is still non-
equilibrium (non-multifractal). The inequality of the two exponents> x means that

the off-equilibrium decay idaster than the quasi-equilibrium decay, which is intuitively
satisfactory.

We show in figure 4 some examples of the crossover behaviour of the autocorrelation
function, which was obtained using the exact solutions of the master equation on real
samples of random trees. The random trees are generated by the Monte Carlo method
which simulate the RBP ofa) puranch= 0.10, b = 1.0 and F (/) = §(¢» — 0.2) and ()
Poranch= 0.10, b = 1.0 and F (/) = 8(¢ — 0.5). The random average was took over 10
different realizations of such trees generated by 50 Monte Carlo steps. The predicted power
law = and¢ =~ with (a) A = 7(0) = 0.0953... andx = —7(2) = 0.0325.... (see figure 2)
and (b)A = t(0) = 0.0953... andx = —t(2) = 0.0513... which are obtained from (26),
are also included in the figure. The curvatures of the curves at lower valuearefdue to
the finite size effects. In figure 5 we show the scaling plot of the data shown in figaye 4(
The curves of different,, are plotted against/#, and shifted vertically so as to converge
to a master curve. One can well see that the data are consistent with the predicted scaling
laws (55) and (56).

4. Discussion

We have studied aging effects in a simple exactly solvable model of hierarchical diffusion.
We considered the case that equilibrium probability distribution has multifractality. A
specific way to generate such trees by randomly branching processes (RBP) are introduced
for demonstrations. Aging processes after temperature quenches appear as the growth of
aged sub-trees in which the probability distribution is in quasi-equilibrium and multifractal.

In the thermodynamics limit, the height of the tree becomes infinite and the true equilibrium
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1.0+

0.1

-10

20

10° 10 10"

t,

Figure 5. The r/ny scaling plot ofq(rw + 7, tw): the data of of different,, presented in
figure 4@) exceptry = 0 andoo, are used in this plot. The vertical scale is arbitrary.

cannot be attained in any large but finitg Consequently, the waiting time dependence
persists for the whole range af, except fors, = oo, i.e. the ergodicity is weakly
broken [12]. We found that these properties are clearly reflected in the survival-return
probability and brings about the characteristic crossover from quasi-equilibrium behaviour
to off-equilibrium behaviour.

Let us make some comments on the robustness of the scaling properties of the
autocorrelation function we obtained in our exactly solvable model. Note that there are
other possible choices of the transition matrix other than our present choice, which describe
hierarchical diffusions and endures the detailed balance condition (11). For instance, one
may define another transition matrix by replacimgL;, A,) in (10) by = (L;, A,)"1. One
can also construct transition matrices considering that transitions between a pair of leaves
occur only over their lowest common ancestor. We investigated the solutions of the master
equations with these alternative transition matrices on random trees generated by the RBP
by numerical diagonalizing the transition matricies. Interestingly enough, we found that the
scaling behaviours of the autocorrelation function appears essentially the same as that of
the exactly solvable one presented in this paper and one only needs some renormalization
of the global unit of time. This fact implies that the scaling properties are robust to some
extent against minor changes of the model.

It is interesting to note that the crossover behaviour figumasi-equilibriumbehaviour
(r <« ty) to off-equilibrium behaviour { > #,) obtained in the present toy model, is
very similar to that observed in the relaxational dynamics of some microscopic models of
random systems such as the three-dimensional spin-glass model [1@Habddimensional
directed polymer in random media [14]. In the latter models, the autocorrelation functions
obeyt/t, scaling law with two power law decays* at the quasi-equilibrium regime and
+~* at the off-equilibrium regime, which is what we found in the present phenomenological
toy model. Thus, it is tempting to speculate that our present toy model will provide a clue to
understanding the link between phenomenological pictures based on hierarchical diffusion
and the glassy dynamics of realistic systéms

T In the case of SK model, which is a mean-field spin-glass model, it is known [19] that the participation ratio
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Appendix A. The umbrella set

In this appendix we show that the umbrella set defined in (15), (16) and (18) are the true
eigenstates of the matrik defined in (14). We prove this by checking if the umbrella set
correctly reproduces the original transition matrix defined in (10).

Using (15) and (18) in (20) we obtain

—Tizj=— Y w(Li, Byu(Li, B)2(B)u(L;, B)
B

= (L, A(Li, L)) exXp(—haw; ;)

- > wLiBexp—hpu’(L;, B)
BeA(A(L;,Lj))

M
=(Li, Ao) €XP(—hao) — > 7(Li, Ay) €XP(—ha Ju*(L;, Ay)
n=1

where we definedlo = A(L;, L;) and A1, A, ..., Ay_2, Ay—1 = Biop and Ay, = Begiling-

We further rewrite the r.h.s. of the last equation as follows. The factdr, A,) in
the last equation can be replacediia, 1, A,) due to the definition (16). And the factor
w(L;, A,) can be decomposed asL;, A,_1)7(A,_1, A,). Then we can use the identity
T(An_1, ADu?(Ap_1, Ay) = 1 — 7(A,_1, A,), which follows from (16) and (1). Then we
obtain

M
r.h.s.= w(L;, Ao) eXp(—ha,) — Z w(Li, Apm1) (A — 7 (An_1, Ap)) €XP(—hy,)
n=1

S

-1
= [exp(—ha,) — exp(—ha, )] (Li, Ay) (57)

n

Il
o

where we used s, = hg,,, = oo in the last equation. Then using the relation (6), we see
that the off-diagonal elements of the transition probabi##y..; defined in equation (10) is
correctly reproduced by the umbrella set.

3", W2 where W, is the equilibrium statistical weight of a pure statgis non-zero. The latter means that the

total statistical weight is dominated by only a few pure states. Contrarily, in the case of random trees generated
by RBP, the participation ratio goes to zero as the height of the/treecomes infinitely high becaus«?) is
negative. Thus in the case of RBP trees, the survival-return probability goes to zero in the 4imito even

after the limitzy, — oo is reached, while it might be non-zero in the case of SK model. IkidaR Bouchaud for
pointing this out [18].
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Next we check if the matriX’, written in terms of the umbrella set, properly conserves
the total probability. Taking the sum ovérmf both sides of (20) we obtain

dYory=>) (Zn(L,-, B)u(L;, B)) 2(B)u(L;j, B) = 0. (58)
i B i

The last equation is derived from the following. FBr= Bceiing, the contribution is zero
sincez(Bceiing) = 0. And for B # Beeiing, ONe finds again zero contributions using (15),

Zn(Ll,mu(L,,B) [ a(Li, B) — ‘/1 L 7(Li. B)
1-vs L eD,(B) L; eD”(B)
_ -y,
1 w (1— ) — s Yp = 0.

Thus we obtain the last equation of (58).

Appendix B. Mass exponents on random trees

In this appendix we study the scaling property of tih moment of the probability
distribution on the random trees generated by the randomly branching process (RBP) and
derive the formula (26).

Let us denote the probability that thgh momenta, (k) of a random tree of size
h = mdb takes valuex asw,(m, x). Considering that larger trees can be constructed by
smaller sub-trees, we obtain the following recursion relatiorupen, x),

1
w,(m+1,x) = Pbranch/ dy1 dyz/ dyr F(Y)wg (m, y)w, (m, y2)
0

X8y + A=Yy —x)+(1— Pbranch@q (M, X). (59)

In order to solve this integral equation, it is convenient to introduce a generating function
defined as

Zy(u,m) = /dxexp(ux)wq(m,x). (60)
The expectation value of thggh moment can be obtained as
a
My(h) = (X)gm = fdxqu(m Xx) = Z (u, m) . (61)
u=0

Multiplying exp(ux) on both sides of (59) and integrating overwe obtain the recursion
relation forZ, (u, M)

1
Z,(u,m+1) =Pbranch/(; dl/fF(w)Zq(uV/q, m)Zy(u(l— ¥, m)+ (1— Pbranch Zq (1, m).
(62)
Then we obtain the recursion relation for), .
1
(X)g.m+1= |:Pbranch/(; dy F){y? + L -y} + (1 - Pbrancf)i| (x)q.m- (63)

Solving the last equation witkx), 1 = 1, we obtain
My (h) ~ (x)q.m = exp(t(q)h) (64)
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where the mass exponenty) is obtained as

1
t(¢) = db™"log [Pbranchfo dy FO ' + Q- v)* + 1 — Pbranch)]. (65)

In order to further investigate the multifractal properties, it is convenient to introduce the
exponent of singularityr defined as
7(B, B) = expl—a(B, B)(hz — hy)]. (66)

Then one can obtain the distribution®@for f(«) spectrum using the well known procedure
[16] and discusgurdling. However, we do not discuss it here [17].

Appendix C. Scaling form of the kernel

In this appendix we study the scaling property of the kel z) with respect to; and
Z. Its explicit form (51) is

L1 .
P =13 ) 8 —2B)
B B
x8(Z — 2<é)>{ > w(Li, Byw(Li, By?(Li, Byu(Li, B) Y u(L;, é)}. (67)
i J

Note that, from the definitions (16), the facto¥(L;, B)u(L;, B) is non-zero only when the
leaf L; is under bothB and B.

At first we consider the case > z. In this case, the terms which survive in the sum
(67) are those in whicl is an ancestor o and B is an ancestor of;. Let us introduce
h = —log(z) and/ = — log(?). Then we obtain

p(z,2)dzdZ (z > 2) = % Z 8(2 — 2(B)7°(B, Biop)

BeD(Byp)
x Y 8(:—2(B)n°L;. Byu(L;. B)
LjeD(B)
x> 8(z—2(B)S(E — 2(B)m (B, Byu(B, B)
BeD(B)
x Y 8(z—Z(B)TA(Li, Byu?(L;, B)dz dz
L;eD(B)

1 . , , ,
~ Mok, — ) Mo(h) Ma(h — ) Ma(h) dh o

ot d
Z z
where we evaluated the sums by their mean values (23), assselirgveragingproperty,
and used (26) and/ ~ Mo(hg,,).
The other case < z can be analysed in the same way. Considering that the terms
which survive in the sum (67) are those in whiBtis an ancestor of and B is an ancestor
of L;, we obtain

(68)

1
P Ddzdi(z <D=~ > 8(z—iB)T°B, Biop)
BeD(Bmp)
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x Y 8z —Z(B)SE — 2(B)w (B, Byu*(B, B)

BeD(B)

x Y 8(2—2(B)HT(Li, Byu(Li, B)
L;€D(B)

x Y 8(z—2(B)7°(Li, Byu(L;, B) dz dz
L;eD(B)

1 . , . .
~ NMO(hB“’p — h)yM1(h — h)M2(h)Mo(h) dh dh

(0) dz dz
~ (E) i bl (69)
Z Z Z

where we used agaiN =~ Mo(h3,,). Combining the above results, we obtain (52).

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]
El
(10]

(11]

(12]
(13]

(14]
[15]
[16]
(17]
(18]
[19]

Vincent E, Hamman J and Ocio M 19%ecent Progress in Random MagngBéngapore: World Scientific)

Struik L C E 1978Physical Aging in Amorphous Polymers and Other Mater{flew York: Elsevier)

Sibani P and Hoffmam K H 1989 Phys. Rev. Lettt3 2853

Sibani P and Hoffmam K H 1990Z. Phys.B 80 429

Hoffmann K H and Sibani P 198®hys. RevA 38 4261

Huberman B A and Kerszberg M 1988. Phys. A: Math. Genl8 L331

Shreckenberg M 198%. Phys.B 60 483

Ogielsk A T and Sten D L 1985Phys. Rev. Lett55 1634

Bacha C P and HubernmaB A 1987J. Phys. A: Math. Gern20 4995

Nemoto K 1988Cooperative Dynamics in Complex Physical Systeth$1 Takayama (Berlin: Springer)

Palme R G 1982Adv. In. Phys31 669

Palme R G 1987Heidelberg Colloquium on Glassy Dynamics (Lecture Notes in Physit)75, & J L van
Hemmen and | Morgenstern (Berlin: Springer)

Sibani P and Schriver P 19%hys. RevB 49 6667

See also Sibani P, Seh J C, Salamon P and Andersd O 1993Europhys. Lett22 479

Bouchad J P 1992]. Physique2 1705

Rieger H 1993J. Phys. A: Math. Ger26 L615

Rieger H 1995Annual Reviews of Computational Physicg 2, ed D Stauffer (Singapore: World Scientific)

Yoshino H 1996J. Phys. A: Math. Ger29 1421

Mandelbra B B 1982 The Fractal Geometry of NaturgSan Francisco, CA: Freeman)

Feder J 198&ractals (New York: Plenum)

Yoshino H 1996PhD ThesisUniversity of Tsukuba

Bouchad J P Private communication

Mézart M, Parisi G, Sourlas N, Toulouse G and Virasoro M 1P&%s. Rev. Lett2 1156

Mézart M, Parisi G, Sourlas N, Toulouse G and Virasoro M 198Rhysique45 843



